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In this study self-organized periodic coherent vortex structures arising in geophysical
turbulent flows at low Rossby number are investigated by developing a conceptual
model based on an analytical theory of von Kármán vortex streets affected by
stratification and differential rotation. In the framework of a quasi-geostrophic
(QG) two-layer beta-plane model vortex streets with three different types of vertical
structures (barotropic, upper layer and hetonic) are analysed using the point vortex
approximation. The streets are found to be exact solutions of the potential vorticity
equation and to be characterized by four non-dimensional parameters. Von Kármán
streets are semi-localized solutions which form a bridge between vortex pairs (limit
of symmetric dilute streets) and two parallel vortex sheets (limit of dense streets). On
the beta-plane QG von Kármán streets can only move to the east, i.e. with a speed
outside the range of speeds of Rossby waves, so that a dynamical asymmetry in the
zonal direction is introduced. A complete classification on a diagram of states shows
that critical bounds exist in the parameter space, prescribing for example a maximum
distance between vortex rows beyond which no QG vortex streets can be found.
Typically a fast and a slow vortex street with different flow structures are found in
the region of existence. As a function of distance between vortex rows baroclinic QG
vortex streets show a characteristic non-monotonic speed behaviour at scales of the
order of the baroclinic Rossby radius. A wide region of possible existence of QG von
Kármán streets is found in atmospheric, oceanic and planetary conditions as well as
in rotating tank experiments. The theory can be applied to describe the coherent part
of turbulent baroclinic intermittent zonal jet-like and frontal flows and provides a
scaling for such flows.

1. Introduction
1.1. Von Kármán streets in geophysical flows

The organization of flows into vortex streets of von Kármán type is a widespread
phenomenon in hydrodynamics, observed on scales ranging from flows in small
laboratory tanks to flows on giant planets. The structure of the flows of von Kármán
type is remarkably similar in all circumstances and can be described by the simple
schematic model shown in figure 1. Von Kármán vortex streets (Kármán 1911) are
formed by two parallel rows of equally spaced vortices all having the same strength –
with positive (cyclonic) vorticity in one row (solid circles) and negative (anticyclonic)
in the other (open circles). In this model only three parameters are needed to charac-
terize a street: the zonal distance a between vortices, the distance between rows b
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Figure 1. Horizontal structure of symmetric streets (a) and antisymmetric streets (b).

Figure 2. Self-organized westward propagating antisymmetric vortex street in a wind-driven
turbulent two-layer QG numerical channel flow which is in a statistical steady state. (The
potential vorticity (PV) field of the upper layer is shown. Red and blue mark cyclonic and
anticyclonic vortices respectively.

and the vortex strength κ . Only two types of vortex streets (symmetric streets with
non-shifted rows (figure 1a) and antisymmetric streets with rows shifted by s = a/2
(figure 1b) are able to move themselves as a stationary structure with constant speed
c in the zonal direction (x-direction). Basically antisymmetric streets are observed.
The model of symmetric streets is important to describe the flow consisting of a row
of cyclones or anticyclones along a wall, i.e. a single vortex street along a coastline in
the ocean.

Von Kármán vortex streets can arise in two different ways: as trapped streets
downstream of obstacles placed in a uniform oncoming steady flow; and as freely
propagating streets in zonal jet-like flows. Vortex streets trapped behind obstacles
have been intensively studied during the last hundred years in a huge number of
laboratory experiments starting from Bénard (1908), see e.g. Durgin & Karlson
(1971) and references therein. With satellite imagery it was realized that trapped
vortex streets also existed on much larger scales in the atmosphere behind mountains
(see e.g. Etling 1989 and references therein). Measurements from ship revealed further
that the same phenomenon could be found behind islands in the ocean (see e.g.
Barkley 1972). Freely propagating vortex streets were observed in geophysical flows
on even larger scales, as for example in the ocean (Barkley 1968) on Jupiter (Ingersoll
1990; Marcus & Lee 1998) and on Saturn (Godfrey, Hunt & Suomi 1983). Finally,
von Kármán streets were also used to interpret patterns observed in planetary and
interplanetary plasmas, as for example those observed in black aurora (see Shukla,
Birk & Bingham 1985 and Kimball & Hallinan 1998) or in the heliosphere (see
Burlaga 1990).

More recently von Kármán vortex streets have been intensively studied numerically.
Freely propagating von Kármán vortex streets were reproduced in two-dimensional
flows by Aref & Siggia (1981) and in large-scale geophysical flows affected by rotation
by Flierl, Malanotte-Rizzoli & Zabusky (1987), Gurulev & Kozlov (1988), Borth
(1999) and Poulin & Flierl (2003). Figure 2 is an example of a freely propagating
von Kármán street which self-organized in a turbulent large-scale geophysical flow
affected by rotation and stratification (Borth 1999 and Borth et al. 2004). Shown
is a representative snapshot of the potential vorticity (PV) field of the intermittent
turbulent jets typically arising in the statistically steady regime of a wind-driven
two-layer numerical channel flow with vanishing or weak ambient vorticity gradient.
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The periodically arranged cyclones and anticyclones with the horizontal flow topology
of an antisymmetric vortex street (figure 1b) organize themselves from a wind-driven
disordered flow and persist for all time.

The persistence of von Kármán streets can be explained by the mechanism of
locking together many vortices through a self-sustaining superposition of the flow
fields of the individual vortices resulting in a large-scale periodic structure of special
symmetry moving as a whole with constant zonal speed (Kármán 1911; Lamb 1932).
The classical von Kármán theory of vortex streets based on the point vortex approach
and the more recent theories considering vortices of finite size (Saffman & Schatzman
1981, 1982) do not take into account stratification and differential rotation effects. The
effect of stratification on the structure and dynamics of von Kármán vortex streets in
a QG (quasi-geostrophic) equivalent barotropic (1 1/2)-layer model of point vortices
on the f -plane was considered by Stewart (1945) and by Masuda & Miki (1995).
They both give an exact solution for symmetric and antisymmetric von Kármán
vortex streets. The effect of differential rotation on the structure and dynamics of von
Kármán vortex streets was investigated by Gryanik (1986) in the framework of the
point vortex approximation, but only the case of barotropic flows was considered.
These theories assume a homogeneous vertical structure of the localized vortices,
which is not the case in baroclinic flows where vortices can be of different vertical
extent. Two basic cases of baroclinic vortex streets can be distinguished: mechanically
driven upper-layer streets which can be generated by wind stress in the ocean (see
figure 2) and thermally driven hetonic streets, which can be naturally generated, e.g.
in deep convection.

In our idealized model description these two cases is represented by upper-layer
streets (figure 3b, below) and hetonic streets (figure 3c, below) respectively.

The basic idea of the present study is to generalize the theory of two-dimensional
von Kármán streets to a minimal model (a QG two-layer beta-plane) which explicitly
resolves the vertical structure of baroclinic vortices and allows the analysis of the
combined effects of stratification and differential rotation.

The following problems will be the centre of interest: under which conditions is the
self-organization of localized vortices into stationary von-Kármán-like vortex streets
in stratified and differentially rotating geophysical flows possible; and how is the
dynamics of von Kármán vortex streets affected by external and internal parameters
like stratification, differential rotation, intermittency, strength of vortices and vertical
structure of vortices.

1.2. Approach and method

In real geophysical conditions von-Kármán-type coherent vortex structures develop
in very high-Reynolds-number turbulent flows where forcing, dissipation and
background fluctuations are always present. We use the adiabatic vortex dynamics
approach neglecting effects of forcing and dissipation to tackle the difficult
problem of structured turbulence. This approach, suited to describing the nonlinear
coherent vortex dynamics effects in turbulence explicitly, has been used before in
both homogeneous and isotropic three-dimensional (Biot-Savart vortex filament
approximation, e.g. Fernandez, Zabusky & Gryanik 1995; Pullin & Saffman 1998 and
references therein) and QG quasi-two-dimensional stratified and rotating (contour
dynamics approximation, e.g. Sokolovskiy and Verron 2000 and references therein;
point vortex approximation, e.g. Flierl 1987; Gryanik et al. 2000 and references
therein) turbulent flows. The recent status of the adiabatic vortex dynamics approach
to turbulence is discussed in the review of Pullin & Saffman (1998).
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For large-scale motions of fast rotating fluids (atmosphere or ocean) the so-called
QG two-layer beta-plane model (Phillips model, see Pedlosky 1987) is accepted to be
a minimal model. It is designed to describe large-scale fast rotating stably stratified
flows, incorporating in elementary form the effects of background stratification by two
immiscible fluid layers and planetary rotation by a constant gradient of the rotation
rate (Coriolis parameter) in the meridional direction. To investigate von Kármán
vortex streets in the QG two-layer beta-plane model we use the approach of baroclinic
QG point (singular) vortices. The theory of baroclinic point vortices for two-layer
QG flows on the f -plane (constant rotation) was developed by Gryanik (1983) and
Hogg & Stommel (1985), see also Legg & Marshall (1993) and Danilov, Gryanik &
Olbers (2001). It was generalized further to a beta-plane by Reznik, Grimshaw &
Sriskandarajan (1997). The theory of QG two-layer beta-plane vortex streets we
develop is based on the model of Reznik et al. (1997) and is a straightforward
generalization of the theory of barotropic von Kármán vortex streets on an infinite
beta-plane (Gryanik 1986), on one hand and of the theory of von Kármán vortex
streets on a 1 1/2-layer f -plane (Stewart 1945) on the other.

In § 2 the general model framework and the concept of periodic quasi-stationary
point vortex structures on beta-plane is presented. In § 3 the special classes of
symmetric and antisymmetric vortex streets with three different vertical structures
are introduced. After a description of the scales and characteristic non-dimensional
parameters in § 4 the dynamical properties of these streets are analysed in § § 5 to 7,
emphasizing the joint effects of differential rotation and stratification. The basic tool
of analysis in these sections is the nonlinear dispersion relation of QG vortex streets.
In § 8 the basic physical concepts of the QG vortex street approach are discussed and
a classification of QG vortex streets on a diagram of states summarizes the analytical
investigations. Section 9 presents scaling laws for von Kármán street phenomena in
oceanic, atmospheric and laboratory conditions. Universality and limitations of the
results are discussed in § 10, conclusions and an outlook for the application of the
theory of QG vortex streets is given in § 11.

2. The quasi-geostrophic two-layer beta-plane model
2.1. Basic equations

The QG two-layer beta-plane model (see e.g. Pedlosky 1987) has two immiscible and
homogeneous fluid layers with constant densities ρ1 and ρ2 and mean thicknesses H1

and H2 bounded by a rigid lid and a flat bottom. The dynamics is governed by the
potential vorticity (PV) equations

∂qj

∂t
+ J (ψj, qj ) + β

∂ψj

∂x
= Fj − Sj , (2.1)

qj = ∇2ψj + (−1)jFj (ψ1 − ψ2) with Fj =
f 2

0

g′Hj

. (2.2)

Here ψj (j =1, 2) and qj are the upper- and lower-layer streamfunctions and PV fields,
J (ψ, ω) = ∂xψ ∂yω − ∂yψ ∂xω is the Jacobian, ∇2ψ = ∂xxψ + ∂yyψ the two-dimensional
Laplacian, f = f0 + βy the Coriolis parameter and g′ = g (ρ2 − ρ1)/ρ0 the reduced
gravity with g the gravitational acceleration, ρj the densities of the fluid layers and
ρ0 the mean density of the fluid. Further Fj and Sj are vorticity sources and sinks.
In view of derivations following later the planetary part of the vorticity f0 + βy was
taken out of the PV definition (2.2). The zonal velocity uj , the meridional velocity vj
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and the displacement of the layer interface η, are given by

uj = −∂ψj

∂y
, vj =

∂ψj

∂x
, η =

f0

g′ (ψ1 − ψ2). (2.3)

2.2. Quasi-stationary point vortex structures

Restricting the class of solutions to quasi-stationary flows moving with constant speed
c in the x-direction (zonal direction)

ψj (x, y, t) = ψj (x − ct, y) (2.4)

the PV equations (2.1) and (2.2) can be simplified. Inserting (2.4) in equations (2.1)
and (2.2), where vorticity source and sink terms are considered to be in exact balance
(Fj − Sj =0) and introducing a new time-independent x-coordinate x − ct one
obtains

−c
∂Qj

∂x
+ J (ψj, Qj ) = 0, (2.5)

Qj = ∇2ψj + (−1)jFj (ψ1 − ψ2) − β

c
ψj , (2.6)

where the first two terms correspond to qj in equation (2.2).
In the special case of a family A of point anomalies α of the modified PV field Qj

with positions (xα, yα) located in layers jα and having vorticity strengths κα the total
modified vorticity distribution in layer j can be written as

Qj,A(x, y) =
∑
α∈A

κα δ(x − xα)δ(y − yα) δjjα
, (2.7)

where δ(x) is the Dirac function and δjjα
the Kronecker delta. Solving the modified

PV equation (2.6) for Qj,A gives the streamfunction

ψj,A =
∑
α∈A

κα

[
Uj1U

−1
1jα

Gλ1
α + Uj2U

−1
2jα

Gλ2
α

]
, (2.8)

where Gλk
α are the well-known Green’s functions solving the Helmholtz equation

(∇2 − λ2
k) Gλk

α (x, y) = δ(x − xα)δ(y − yα) (2.9)

on an infinite plane given by

Gλk

α =


1

2π
ln

(
rα

L0

)
, λk = 0

− 1

2π
K0(λk rα), λk �= 0,

(2.10)

with Kn(r) the modified Bessel function of order n, rα(x, y) =
√

(x − xα)2 + (y − yα)2

the distance from the point vortex α and L0 a physically grounded external length
scale (see e.g. Gryanik 1983). The scaling factors λ2

k are the eigenvalues of the modified
PV operator in (2.6):

λ2
1 =

β

c
, λ2

2 = F1 + F2 +
β

c
. (2.11)

The coefficients Uj,kU
−1
k,l in equation (2.8) are products of the entries of the

transformation matrix U and its inverse U−1 which diagonalize the modified PV
operator (2.6). The first column of U consists of the eigenvector belonging to the
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eigenvalue λ2
1 (barotropic mode) and the second to the eigenvector belonging to λ2

2

(baroclinic mode). The square roots λ1 and λ2 determine the length scales of the
barotropic and baroclinic flow fields induced by the vortices. A necessary condition
for the localization of the vortex structures are real length scales λk or equivalently
positive eigenvalues

λ2
k � 0, (2.12)

otherwise the Green’s function in (2.10) has wave-like character. On the f -plane
λ2

1 = 0.
Inserting the vorticity distributions Qj,A and the corresponding streamfunctions

ψj,A in the nonlinear part (2.5) of the vorticity equation gives for every point vortex
α ∈ A the following conditions of quasi-stationarity:

c = −∂ψjα,A′

∂y

∣∣∣∣
(xα,yα )

, 0 =
∂ψjα,A′

∂x

∣∣∣∣
(xα,yα )

, (2.13)

where A′ = A/{α} is the family of point vortices with the vortex α itself excluded.
For zonally periodic states ψ(x, y) = ψ(x + X, y) with period X the conditions for
quasi-stationarity (2.13) have only to be satisfied for vortices within one period in
order to hold for the whole vortex structure. In the case β �= 0 these conditions are
non-trivial since the velocity fields on the right-hand side of (2.13) depend implicitly
on the propagation speed c.

Two types of necessary conditions for the existence of localized quasi-stationary
point-vortex structures on a beta-plane can be distinguished.

(i) A local condition necessary for the localization of individual vortices

0 < c < ∞ (2.14)

following from (2.11) and (2.12) guarantees the localization of both the barotropic
and baroclinic mode and implies that for β �= 0 all quasi-stationary structures formed
from localized vortices can move only in the positive x-direction (i.e. to the east). For
λ2

1 = 0 we have from (2.11) β = 0. In this case (f -plane) to every solution c of (2.13)
there corresponds a solution −c by changing cyclones to anticyclones and anticyclones
to cyclones. On the beta-plane this is not true (see also the last paragraph of § 8).

(ii) Global conditions, necessary for the existence of a point vortex structure as a
quasi-stationary balanced state, follow from solvability conditions of equations (2.13).
Two of the global conditions state that the total modified PV Q of a vortex structure
A and the zonal momentum Py =

∑2
j=1 Hj

∫∫
∂ψj/∂x dx dy must be exactly zero:

Q =
∑
α∈A

Hjα
κα = 0, Py =

∑
α∈A

Hjα
καxα = 0. (2.15)

Both conditions in (2.15) follow from equations (2.13) and integration of equation
(2.7) over the layers, using the methods of Gryanik (1986), Reznik (1986) and Flierl
(1987). Other known examples of localized quasi-stationary vortex structures on the
beta-plane satisfying all the necessary conditions are vortex dipoles (so-called modons)
and point vortex pairs, see e.g. reviews of Flierl (1987) and Nycander (1994). For
linear Rossby waves c < 0 (e.g. Pedlosky 1987), and the localization condition (2.14)
is obviously not satisfied.
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Figure 3. Vertical structure of barotropic vortex streets (a), vortex streets with vortices in
the upper layer (b) and hetonic vortex streets (c).

3. Three basic types of QG von Kármán streets
By symmetry von Kármán vortex streets (see figures 1 and 2) automatically satisfy

the necessary quasi-stationarity conditions (2.15) and the meridional part of the speed
relation (2.13). A given von Kármán street can exist as a quasi-stationary state only
if the zonal part of the nonlinear speed relation (2.13) has some solution c. We will
construct three different types of vortex streets with essentially different transport
properties depending on the vertical structure of the individual vortices.

Type I: Barotropic vortex streets (S symmetric, A antisymmetric) consisting of
vortices of the same strength κ in both layers (figure 3a) have flow fields that stay
barotropic forever so that the stratification has no influence. Evaluating equation (2.8)
for the modified vorticity distribution of barotropic streets leads to the streamfunction

ψ1(x, y) = ψ2(x, y) = κ
[
Gλ

row(x, y; 0, b/2) − Gλ
row(x, y; s, −b/2)

]
(3.1)

where Gλ
row is the Green’s function of a periodic row of vortices. In Appendix A

two representations are derived for Gλ
row: one emphasizing the contributions of the

individual vortices

Gλ
row(x, y; x0, y0) = − 1

2π

∞∑
m=−∞

K0(λ
√

(x − ma − x0)2 + (y − y0)2); (3.2)

and a second emphasizing the zonal periodicity structure of the street

Gλ
row(x, y; x0, y0) = −1

a

∞∑
n=−∞

exp(−
√

(2πn/a)2 + λ2 |y − y0|√
(2πn/a)2 + λ2

cos
2πn

a
(x − x0). (3.3)

Substituting the first representation of the Green’s function into (2.13) we obtain the
nonlinear dispersion relation

c =
κ

2π

∞∑
m=−∞

bλ

rm

K1(λrm), (3.4)

with λ=(β/c)1/2 the length scale, a the zonal distance between vortices, b the distance
between rows and rm = ((ma + s)2 + b2)1/2 the distance function (s = 0 for symmetric
streets and s = a/2 for antisymmetric streets). Barotropic vortex streets in two layers
are dynamically equivalent to vortex streets in barotropic models (Gryanik 1986).
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Type II: Upper-layer vortex streets (Se symmetric, Ae antisymmetric) with vortices
located in the upper layer (figure 3b) ‘feel’ the baroclinic field and equation (2.8) leads
to the streamfunction

ψ(x, y) = κ
[
Gλ1

row(x, y; 0, b/2) − Gλ1
row(x, y; s, −b/2)

]
B

+ κ
[
Gλ2

row(x, y; 0, b/2) − Gλ2
row(x, y; s, −b/2)

]
C, (3.5)

where B =(A1, A1) and C = (A2, −A1), with A1 = 1 − A2 =H1/(H1 + H2) and the
length scales λ1 and λ2 from (2.11). Substituting (3.2) into (2.13) gives the nonlinear
dispersion relation

c =
κ

2π

∞∑
m=−∞

b

rm

[A1λ1K1(λ1rm) + A2λ2K1(λ2rm)], (3.6)

with Gλ
row , a, and rm as in the barotropic case. The specific property of streets with

vortices in only one layer is that the globally integrated layer thickness anomaly η

vanishes, so that they are generated without heat sources (mechanical production).
Upper-layer streets in the limit β = 0 and F2/F1 → 0 coincide with the 1 1/2-layer
vortex streets treated by Stewart (1945) and Masuda & Miki (1995).

Type III: Hetonic vortex streets (Sd symmetric, Ad antisymmetric) with the row
of positive vortices located in the upper layer and the row of negative vortices in
the lower layer (figure 3c) have, due to (2.15), to satisfy the relation κ1/κ2 = −H2/H1.
Using equation (2.8) we obtain the streamfunction

ψ(x, y) = κ
[
Gλ1

row(x, y; 0, b/2) − Gλ1
row(x, y; s, −b/2)

]
B

+ κ

[
Gλ2

row(x, y; 0, b/2) +
A1

A2

Gλ2
row(x, y; s, −b/2)

]
C. (3.7)

The condition of quasi-stationarity (2.13) reduces using (3.2) to the nonlinear
dispersion relation

c =
κ

2π

∞∑
m=−∞

b

rm

A1[λ1K1(λ1rm) − λ2K1(λ2rm)]. (3.8)

Gλ
row , s, B, C , A1, A2 and rm are defined as in the previous cases, (3.4) and (3.6).

Hetonic streets carry a net layer thickness anomaly η, which means that heat sources
are necessary for their formation (thermal production). For another form of the
nonlinear dispersion relations using the second representation see Appendix A.

Purely baroclinic von Kármán streets, i.e. streets formed from two rows of aligned
hetons, do not exist as quasi-stationary solutions, since the velocities induced at the
positions of anticyclones and the position of cyclones forming the individual hetons
are of opposite sign and so will break up the hetons.

4. Scaling and characteristic non-dimensional parameters
Natural length and time scales of von Kármán flow systems are given by L = a

and T = 2a2/κ = L/V , where V = κ/2a is the characteristic velocity. So a system of
four non-dimensional parameters can be introduced to characterize two-layer QG
von Kármán streets on a beta-plane:

k =
b

a
, ε =

2a3β

κ
, σ =

a

R0

, δ =
H1

H1 + H2

, (4.1)
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with R0 =
√

g′(H1 + H2)/(2f0) the reference Rossby radius which in the case of equal
layers coincides with R =(F1 + F2)

−1/2, where R =2R0

√
δ(1 − δ).

The horizontal aspect ratio k characterizes the density of vortices along the rows
of streets. Vortex streets with k 	 1 will be called, ‘dilute streets’, and in the opposite
limiting case k 
 1 ‘dense streets’. Symmetric dilute streets behave like vortex pairs
and dense vortex streets like two parallel vortex sheets.

The planetary (ambient) vorticity gradient ε characterizes the effects of differential
background rotation, so that the case ε = 0 corresponds to f -plane streets.

The two parameters σ and δ characterize the joint effects of homogenous rotation
and stratification. The cases σ = 0 and σ = ∞ correspond to barotropic and equivalent
barotropic streets respectively, otherwise streets are called baroclinic. The equivalent
barotropic limit describes two uncoupled layers (Pedlosky 1987).

Using the system (4.1) of non-dimensional parameters and the velocity scale V the
propagation speed can now be written as

c = V C(k, ε, σ, δ). (4.2)

Vortex streets propagating with speeds C <Ccrit and C >Ccrit are called ‘slow’ and
‘fast’ streets respectively, where Ccrit = Ccrit(ε, σ, δ) is a critical speed which will be
determined explicitly in § § 5 to 7.

5. Barotropic vortex streets
Barotropic vortex streets S and A can exist as quasi-stationary states if to a

given set of parameters there exist solutions of the speed equation (3.4). Using the
non-dimensional parameters introduced in (4.1) one can write

C =
1

π

√
ε

C

∞∑
m=−∞

1

rm(k)
K1

(
k

√
ε

C
rm(k)

)
, (5.1)

with the non-dimensional distance function rm(k) =
√

1 + ((m + s)/k)2 (s =0 for
symmetric streets and s = 1/2 for antisymmetric streets). The propagation speed
C is given implicitly and a unique analytical relationship C = C(k, ε) cannot be given
in general.

Only in the limit of vanishing planetary vorticity gradient ε =0 (f -plane) can
equation (5.1) be solved explicitly:

C = cosh πk, C = tanh πk, (5.2)

giving the well-known propagation speed of classical symmetric and antisymmetric
von Kármán streets in two-dimensional flows represented as dashed lines in plots (a)
and (c) of figure 4.

For ε �= 0 symmetric streets (figure 4a) can exist as quasi-stationary states only if
k is below or equal to some critical maximum aspect ratio kmax. In the case ε = 5 in
figure 4(a) one can estimate kmax by using the dispersion relation (5.1) in the limit
of dilute vortex streets obtained by considering only the contribution of the nearest
vortex given by the term m =0. The asymptotic expressions for the maximum critical
aspect ratio kmax and the critical speed Ccrit are

kmax =

(
ξ 3
0 K1(ξ0)

π

)1/3

ε−1/3 ≈ 0.717 ε−1/3, Ccrit ≈ 0.065 k−1
max, (5.3)

where ξ = k
√

ε/C and the function ξ 3K1(ξ ) attains its maximum for ξ0 ∼ 2.387.
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Figure 4. Dispersion relation for barotropic vortex streets. Speed C as function of k for
different ε: (a) symmetric streets, (c) antisymmetric streets. Speed C as function of ε for
different k: (b) symmetric streets, (d) antisymmetric streets.

The propagation speed of fast dilute vortex streets can be approximated by

C =
1

πk
− k2ε

4
ln

(
4

πεk3

)
if k

√
ε/C 	 1, (5.4)

where the first term is the propagation speed of a vortex pair on the f -plane (dashed
curve in figure 4a) and the second term is a non-analytical correction. The correction
is always negative since 4/(πεk3) 
 1. The propagation speed of slow dilute vortex
streets (lower branch of solution curves) is given by

C =
k2ε

ln2(1/
√

2πk3ε)

(
1 − 5

ln ln(1/
√

2πk3ε)

ln(1/
√

2πk3ε)

)
(5.5)

and valid for k
√

ε/C 
 1 and k 	 min(1, ε−1/3). Slow dilute symmetric vortex streets
are generic beta-plane solutions and have no analogue on the f -plane.

The critical maximum aspect ratio kmax for the ε = 0.1 curve in figure 4(a) can be
estimated by using the dispersion relation (5.1) in the dense street approximation
obtained by keeping only the first term of the second representation of the dispersion
relation (B 3) or (B 5) in Appendix B. For kmax and the corresponding critical
propagation speed one obtains the following asymptotic expressions:

kmax =
2

e
ε−1/2, C = e−2. (5.6)

The propagation speed of fast dense vortex streets is

C = 1 − k
√

ε if k
√

ε/C 	 1. (5.7)
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The linear behaviour in k can be clearly seen in figure 4(a). The propagation speed of
slow dense vortex streets is estimated for k

√
ε/C 
 1 by the asymptotic formula (5.5)

where the arguments in the logarithms are replaced by 1/(k2ε) and the factor in front
of the second term in the bracket is 4. As shown in figure 4, increasing ε decreases the
critical aspect ratio kmax so that for a stronger ε only more pair-like symmetric streets
survive. Since by our choice of non-dimensional parameters the vorticity density per
unit length along vortex rows is fixed, this means that for increasing ε the vorticity
has to be concentrated in a smaller number of stronger vortices. Another possibility
of course would be to consider vortex streets with a larger vorticity density per unit
length. For aspect ratios smaller than the critical maximum aspect ratio k < kmax there
are always two solutions: a fast vortex street (upper branch of the curves) and a
slow one (lower branch). If we fix the aspect ratio (see figure 4b) a symmetric street
can only exist for values of ε smaller than a critical maximum εmax(k) which for
decreasing aspect ratio becomes larger. Fast symmetric streets propagate in the limit
ε → 0 with the same speed as the corresponding f -plane streets (points where the
upper branches in figure 4b meet the C-axis) and slow symmetric streets approach
zero propagation speed for all aspect ratios.

For antisymmetric vortex streets, in addition to the critical maximum aspect ratio
kmax a critical minimum aspect ratio kmin also exists below which no quasi-stationarity
is possible (figure 4c). The minimum critical aspect ratios kmin for the solution curves
can be derived for dilute antisymmetric streets (k 	 1 and

√
ε/C 
 1). Keeping the

contributions of the two nearest neighbours in equation (5.1) one obtains

kmin =
π

32ξ 3
0 K1(ξ0)

ε ≈ 0.085ε, Ccrit ≈ 0.517 kmin, (5.8)

where the function ξ 3 K1(ξ ) has its maximum at ξ0 =
√

ε/4C. For increasing ε

numerical summing of the full formula is needed to describe the details. The qualitative
behaviour follows immediately: increasing ε induces decreasing maximum critical
aspect ratios and increasing minimum critical aspect ratios till the solution curve
reduces to one point. The minimum and maximum critical aspect ratios meet at
kcrit ∼ 0.29 for εcrit ∼ 1.92. An important new feature is that now εcrit ∼ 1.92 is a
global critical value so that no antisymmetric street can exist when we increase ε

beyond this value. The propagation speed of antisymmetric streets increases for ε =0
monotonically with increasing aspect ratio k. For ε > 0 the propagation speed C(k)
of the fast branch is no longer monotonic and has a finite maximum depending
on ε. Figure 4(d) illustrates that antisymmetric streets with aspect ratios near the
critical value k ∼ 0.29 can survive for the strongest planetary (ambient) vorticity
gradient.

Figure 5 gives an overview of the parameters on the (k, ε)-plane where barotropic
vortex streets can exist as quasi-stationary states on the beta-plane. The dashed line
represents the critical maximum aspect ratio as a function of ε for symmetric vortex
streets and the solid line the corresponding critical maximum (upper branch) and
critical minimum (lower branch) aspect ratios for antisymmetric streets. Above the
dashed line there are no vortex street solutions, on the dashed line there exists one
symmetric street and below it there are two symmetric streets (S). For increasing ε,
as already mentioned, only more and more pair-like symmetric vortex streets survive.
The domain where antisymmetric streets can exist (delimited by the solid line) is
always below the dashed critical curve of symmetric streets and does not penetrate
into regions with planetary (ambient) vorticity gradients larger than ε =1.92. This
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Figure 5. Critical aspect ratio kcrit as function of ε for barotropic streets. The dashed line
represents the critical curve for symmetric streets and the solid line for antisymmetric streets.

Figure 6. Streamline topologies of fast and slow barotropic vortex streets belonging to the
same set of parameters (k =0.2 and ε = 0.5). (a, b) Fast and slow symmetric street. (c, d) Fast
and slow antisymmetric street.

diagram reveals that increasing ε focuses the aspect ratios of possible vortex streets
into a narrow range.

To illustrate the properties of the beta-plane vortex street solutions the streamline
topologies of a modon-type symmetric and a strongly meandering antisymmetric
vortex street are presented in figure 6. Non-dimensional comoving streamfunctions



The theory of quasi-geostrophic vortex streets 35

Φ = Ψ (X, Y ) + CY are used, where Ψ/κ , X = x/a and Y = y/a. Shown are a fast and
a slow solution belonging to the same set of parameters. For larger aspect ratios k

a topological transition leads to a zonally connected flow with different fluid cells in
the symmetric and antisymmetric case (not shown).

6. Vortex streets with vortices in the upper layer
Using the non-dimensional parameters defined in (4.1) the nonlinear dispersion

relation (3.6) for symmetric Se and antisymmetric Ae streets with vortices in the upper
layer can be written in the form

C =
1

π

∞∑
m=−∞

1

rm(k)

[
δ

√
ε

C
K1

(
k

√
ε

C
rm(k)

)

+ (1 − δ)

√
ε

C
+

σ 2

4δ(1 − δ)
K1

(
k

√
ε

C
+

σ 2

4δ(1 − δ)
rm(k)

)]
. (6.1)

The distance function rm(k) is the same as for the barotropic streets in equation (5.1).
In the limit ε = 0 the nonlinear dispersion relation (6.1) can be explicitly solved for

C. For symmetric streets we obtain

C = δ coth πk +
σ

2π

√
1 − δ

δ

[
K1

(
σk

2
√

δ(1 − δ)

)
+ 2

∞∑
m=1

1

rm(k)
K1

(
σkrm(k)

2
√

δ(1 − δ)

)]
,

(6.2)

with the distance function rm(k) of (6.1) taken for s = 0. In the case of antisymmetric
streets we obtain

C = δ tanh πk +
σ

π

√
1 − δ

δ

∞∑
m=0

1

rm(k)
K1

(
σkrm(k)

2
√

δ(1 − δ)

)
, (6.3)

with the distance function rm(k) of (6.1) taken for s = 1/2. In figures 7(a) and 7(c)
the propagation speeds (6.2) and (6.3) of symmetric and antisymmetric streets are
represented as functions of the aspect ratio k. The upper dashed lines (σ = 0), represent
barotropic streets and the lower dashed lines equivalent barotropic streets (σ = ∞).
The specific behaviour of the baroclinic flow field occurs only for intermediate values
of σ at which the vortex system evolves at scales comparable to the Rossby radius R0.
The general behaviour can be seen from figures 7(b) and 7(d) where the propagation
speed C is plotted for different aspect ratios k as a function of σ .

At intermediate values of stratification–rotation parameters σ the speed of
propagation of symmetric dilute streets is approximated by

C =
δ

πk
+

σ

2π

√
1 − δ

δ
K1

(
σk

2
√

δ(1 − δ)

)
. (6.4)

Dense vortex streets propagate with the speed

C = δ + (1 − δ) exp

(
− σk

2
√

δ(1 − δ)

)
. (6.5)
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Figure 7. Dispersion relation for upper-layer vortex streets for ε =0 and δ = 0.5. Speed C as
a function of k for symmetric (a) and antisymmetric streets (c). Speed C as a function of σ for
symmetric (b) and antisymmetric streets (d). The dashed line in (d) represents the maximum
speed Cmax with which the fastest antisymmetric street can propagate for a given σ .

For increasing k or σ the speed approaches the barotropic limit C = δ. For decreasing
σ and fixed k the equivalent barotropic limit with C = 1 is always attained.

The speed C(k) of antisymmetric streets shows, unlike barotropic streets, a non-
monotonic behaviour so that there exists a finite aspect ratio k0 at which a maximum
speed Cmax is reached. For small aspect ratios (k 	 1) antisymmetric streets accelerate
with increasing aspect ratios following the curve of the small-scale limit (σ = 0). The
asymptotic formula is given by

C = δπk +
2kσ

π

√
1 − δ

δ
K1

(
σ

4
√

δ(1 − δ)

)
. (6.6)

After having reached the maximum speed Cmax, which is reached later with decreasing
σ , they slow down again if the aspect ratio k is increased further till they approach
the equivalent barotropic sheet limit C = δ (σ = ∞). The asymptotics is the same as for
dense symmetric streets given in (6.5). The smaller the relative thickness of the upper
layer the stronger the non-monotonic behaviour. This non-monotonic behaviour of C

of antisymmetric streets is due to the combination of two effects. First the transition
from a regime where only adjacent vortices influence each other (dilute limit) to a
regime where vortices are influenced by the mean field of a large number of vortices
(dense limit). Second the clustering of vortices into groups if they are located in
an area with a diameter comparable to the Rossby radius. If vortices in the dilute
regime are at distances apart much larger than the Rossby radius (lowest solid
curves in figure 7c) the propagation speed follows closely the curve of the barotropic
large-scale limit and the non-monotonicity is not pronounced. If on the other hand
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Figure 8. Same as figure 7 but for ε = 0.1.

the transition between the dilute and dense regimes occurs at distances which are
much larger than the Rossby radius (upper solid curve in figure 7c) the propagation
speed follows more closely the dashed curve of the barotropic limit. It drops slowly
and approaches the equivalent barotropic limit for aspect ratios k where the vortex
rows are at larger distances apart than the Rossby radius. The non-monotonicity is
most pronounced if the transition between dilute and dense regimes occurs at vortex
separations comparable to the Rossby radius (solid curve in the middle of figure 7c).
The non-monotonicity is clearly seen in figure 7(d). The upper dashed curve represents
the speed Cmax which for given σ is reached by the fastest antisymmetric street.

The general properties of the solutions C(k, ε, σ, δ) of equation (6.1) for ε �= 0 are
summarized in figures 8 and 9. Comparing figures 8(a) and 8(c) to the corresponding
figures 4(a) and 4(c) for barotropic streets we notice that the domain of existence
shrinks with increasing stratification σ . For aspect ratios which are within the non-
critical interval (0, kmax) for symmetric streets and (kmin, kmax) for antisymmetric streets
a fast and a slow solution can again be found. In figures 8(a) and 8(c) we have chosen
ε = 0.1 so that the equivalent barotropic limit (σ = 0) (upper dashed line) corresponds
to the first case represented in figures 4(a) and 4(c). We see that for intermediate
aspect ratios an increasing σ acts qualitatively like an increasing ε and that all curves
lie between the barotropic (σ = 0) and equivalent barotropic (σ = ∞) limit as in the
case of vanishing ε =0 in figures 7(a) and 7(c).

Since in the limit σ → 0 the dispersion relation (6.1) reduces exactly to the barotropic
relation (5.1) all formulae derived for barotropic streets are in this case also valid
for upper-layer streets. In the limit σ → ∞ the dispersion relation (6.1) reduces to the
barotropic relation (5.1) weighted by the relative thickness δ of the first layer. Using
(5.3) for the critical maximum aspect ratio of dilute symmetric upper-layer streets we
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find (
ξ 3
0 K1(ξ0)

π

)1/3

δ1/3 ε−1/3 � kmax �

(
ξ 3
0 K1(ξ0)

π

)1/3

ε−1/3, (6.7)

where for large σ the lower limit is approached and for small σ the upper. Similarly
the critical minimum aspect ratio kmin for dilute antisymmetric streets can be estimated
using (5.8). For all σ one has the interval

π

32ξ 3
0 K1(ξ0)

ε � kmin �
π

32ξ 3
0 K1(ξ0)

δ−1 ε, (6.8)

with the lower bound approached for small σ and the upper for large σ . The limit of
dense barotropic vortex streets (5.6) allows the critical maximum aspect ratio kmax to
be estimated for symmetric and antisymmetric upper-layer streets:

2

e
δ1/2 ε−1/2 � kmax �

2

e
ε−1/2. (6.9)

For fast dilute symmetric streets we obtain the approximate formula

C = Cf − δ
εk

4πCf

ln
4Cf

εk2
for k

√
ε/C 	 1 and ε/C 	 σ 2/(4δ(1 − δ)), (6.10)

where Cf is given by (6.4). The correction is always negative since the argument in
the logarithm is very large. If one replaces Cf by the propagation speed of pair-
like barotropic vortex streets, formula (6.10) reduces to the corresponding barotropic
equation (5.4) except for the weighting factor δ in the correction term. Changing the
second condition of (6.10) to ε/C 
 σ 2/(4δ(1 − δ)) and keeping the first, i.e. if we
look for small corrections of the barotropic beta-plane solutions due to stratification,
we obtain

C = Cβ − kσ 2

16πδ
ln

4

πk3ε
, (6.11)

where Cβ is the propagation speed of dilute barotropic streets given in equation (5.4).
The influence of stratification on the propagation speed of slow streets is given by

C = Cβ

(
1 + Cβ

σ 2

4δε

)
for k

√
ε/C 
 1 and σ 2/(4δ(1 − δ)) 	 ε/C, (6.12)

where Cβ is the propagation speed of barotropic streets given in (5.5). The correction
terms in (6.11) and (6.12) show a parabolic behaviour (∼σ 2), which can also clearly
be seen for small stratifications in figures 8(b) and 8(d).

The propagation speed of dense fast vortex streets

C = Cf − δk

√
ε

Cf

for k
√

ε/C 	 1 and ε/C 	 σ/(4δ(1 − δ)) (6.13)

is a good approximation for the slope of the curves around k = 1 in figures 8(a)
and 8(c) as long as σ > 1. The stratification correction for the propagation speed of
slow dense upper-layer vortex streets has, assuming σ/(2

√
δ(1 − δ)) 	 ε/C, the same

relation as for dilute streets (6.12), but the barotropic speed Cβ of dense vortex streets
has to be taken.

The effect of stratification on the propagation speed C of fast barotropic
antisymmetric streets is most pronounced for the curve for σ = 1 in figure 8(c).
The slope for fast streets for aspect ratios k > k0 is steeper than for the case without
stratification and only flattens out when the critical aspect ratio kmax is approached.
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Figure 9. Dispersion relation for upper-layer vortex streets. Speed C as function of ε for
different σ : (a) symmetric streets, (c) antisymmetric streets Critical aspect ratio kcrit as function
of ε: (b) symmetric streets, (d) antisymmetric streets.

Figures 9(b) and 9(d) show the propagation speed C as a function of ε for different
σ and fixed k, corresponding to figures 4(b) and 4(d). For all stratification–rotation
parameters σ the solutions C are between the two limiting cases σ = 0 (upper dashed
line) and σ = ∞ (lower dashed line). As in the barotropic case there is a critical
maximum εcrit depending on the aspect ratio k. For increasing σ and decreasing
relative thickness of the upper layer it decreases and for a given δ reaches its
minimum value for σ = ∞. When εcrit is approached the propagation speeds reach the
equivalent barotropic limit σ = 0. For ε → 0 the fast streets tend to the speed C(k, σ )
of the corresponding vortex streets on the f -plane given by equations (6.2) and (6.3).
There can exist a critical stratification σcrit (curves for k = 1.8 in figures 8b and 8d)
when the aspect ratio of the vortex street lies between the critical aspect ratios of
the corresponding barotropic and equivalent barotropic limits σ = 0 and σ = ∞ (see
figures 8a and 8c). If the aspect ratio k is inside the non-critical interval of the
solutions for σ = ∞ (e.g. k =0.3) then there is no critical stratification and fast and
slow solutions always exist (the curves of the slow solutions are too close to the σ -axis
to be distinguished). The dashed line in figure 8(d) is the maximum speed which can
be reached by antisymmetric streets for given ε, σ and δ. As shown in figures 9(b)
and 9(d), at large σ the intervals of non-critical aspect ratios are reduced. The same
is true for smaller δ. The critical aspect ratios of symmetric streets are closer to the
critical aspect ratios of the equivalent barotropic limit σ = ∞ for small ε and closer
to those of the barotropic limit σ =0 for larger ε.

Thus the stratification–rotation parameter σ and the aspect ratio of layer
thicknesses δ have a very strong influence on the structure and dynamics of upper-
layer streets.
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Figure 10. Dispersion relation for hetonic vortex streets on the f -plane. Same parameters
and notation as in figure 7. The dashed line in (b) represents the speed Cmax at which the
fastest symmetric street can move for a given σ .

7. Hetonic vortex streets
The nonlinear dispersion relation (3.8) for symmetric Sd and antisymmetric Ad

hetonic vortex streets is given by
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. (7.1)

The barotropic contributions to the propagation speed of hetonic streets (first term)
is the same as for vortex streets with vortices in the upper layer (6.1) but the factor
1 − δ in front of the baroclinic part is replaced by −δ.

As for upper-layer streets an explicit solution for the propagation speed C can
be obtained for ε = 0. For symmetric streets C is given by the expression (6.3) for
upper-layer streets where the second term in brackets has to be multiplied by the
factor −δ/(1 − δ). The same multiplication of the second term in equation (6.2) gives
the propagation speed for hetonic antisymmetric streets. Hetonic vortex streets always
move slower than the corresponding upper-layer streets: compare figures 7 and 10.

Only in the equivalent barotropic limit does the speed of hetonic streets approach the
speed of upper-layer streets. The propagation speed of dilute symmetric hetonic streets
is given by (6.4) where the second term has to be multiplied by the factor −δ/(1−δ). In
this case the propagation speed has a pronounced non-monotonic behaviour, which is
a specific effect of baroclinicity and has a local maximum C0 = 0.2 σ

√
δ/1 − δ for the
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aspect ratio k0 = 2.2
√

δ(1 − δ)/σ . Expressed in dimensional variables this means that
a heton moves with a maximum speed of c0 = 0.2 δ κ/R when the horizontal distance
between the vortices is of the order of the baroclinic Rossby radius of the system
(b0 = 1.1 R). The approximation

C = − σ 2k

8π(1 − δ)
ln

(
σk

4
√

δ(1 − δ)

)
for σk/(4

√
δ(1 − δ)) 	 1 (7.2)

shows that the velocity can increase arbitrarily for small aspect ratios k. In the
limit σ 	 1 the heton does not move at all and in the limit σ 
 1 it behaves as an
upper-layer vortex pair moving with the speed C = δ/(πk).

Dilute antisymmetric streets do not show a non-monotonic behaviour of the
propagation speed. To first order the speed increases linearly with k following the
relation (6.6) with the standard replacement for the second term, i.e. the multiplication
with the factor −δ/(1 − δ). Also, in the limit of dense vortex streets the propagation
speed no longer exhibits a non-monotonic behaviour in the symmetric as well as in
the antisymmetric case. The limiting formula is

C = δ − δ exp

(
− σk

2
√

δ(1 − δ)

)
, (7.3)

so that for large k or σ the dense limit of large-scale upper-layer streets (C ∼ δ) is
reached. As a general rule the propagation speed of hetonic streets increases with
increasing aspect ratios, starting from zero for small k and reaching the sheet limit for
large k without having a local maximum as long as the stratification parameter σ is
small, i.e. as long as many vortices are located within one Rossby radius. In this case
only a sheet-like mean behaviour can be expected. For larger stratification parameters,
i.e. for a Rossby radius smaller than the typical distances between vortices, vortices
basically ‘feel’ the nearest neighbours and the propagation speed C of symmetric
hetonic streets is governed by the dilute approximation and becomes non-monotonic
with a maximum for some finite aspect ratio kmax (compare upper solid curve in
figure 10a). Figures 10(b) and 10(d) show the propagation speed C as a function of σ .
The dashed curves in plot (b) representing the maximum speed which can be reached
by symmetric hetonic streets for a given σ again show a non-monotonic behaviour:
for small σ the maximum is the speed of sheets – when σ passes a critical value the
maximum speed of pair-like streets (small k) becomes larger.

For ε �= 0 the dispersion relation can be solved only implicitly as for upper-layer
streets. In the equivalent barotropic limit hetonic and upper-layer streets move with
the same speed. In the barotropic limit hetonic streets stop moving.

One can derive upper and lower bounds for the critical aspect ratios

0 � kmax �

(
ξ 3
0 K1(ξ0)

π

)1/3

δ−1/3 ε−1/3, (7.4)

using the corresponding inequalities (6.7)–(6.9) for upper-layer streets. The critical
minimum aspect ratio of dilute antisymmetric hetonic streets can be estimated by

π

32ξ 3
0 K1(ξ0)

δ−1ε � kmin. (7.5)

For decreasing stratification kmin increases and kmax decreases till they meet for some
critical minimum stratification (σmin) and only one solution can be found. A new basic
feature of hetonic streets is that no antisymmetric streets can exist if the stratification
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Figure 11. Same as figure 10 but for ε = 0.1. The dashed lines in (b) and (d) represent the
speed Cmax at which the fastest symmetric or antisymmetric street can move for a given σ .

is below this critical value (σ <σmin). The critical maximum aspect ratio of dense
(k 
 1) symmetric and antisymmetric hetonic streets can be estimated from

0 � kmax �
2

e
δ1/2ε−1/2. (7.6)

As can be seen from figures 11(a) and 11(c) the qualitative features remain basically
the same as for upper-layer streets (figure 8a, c). Symmetric hetonic streets only exist
if the aspect ratio is below some critical value kmax. For antisymmetric streets there
is in addition a minimum critical aspect ratio kmin. In the non-critical domain, again
always a fast and a slow vortex street exist. The solution curves for hetonic streets
are all located below the equivalent baroclinic limit, which itself is the lower bound
for upper-layer streets. So propagation speeds are always lower and the domain of
existence grows with increasing stratification σ , unlike upper-layer streets. This can
also be seen from figures 12(a) and 12(c) where εcrit always decreases with decreasing
stratification for fixed aspect ratio. The maximum critical planetary vorticity gradient
reached for the equivalent barotropic limit is at the same time the minimum critical
planetary vorticity gradient for the corresponding upper-layer streets (figures 9a and
9c). Depending on the aspect ratio k the propagation speed C changes differently with
varying stratification σ (figures 11b and 11d). For small σ only pair-like symmetric
streets exist (plot b). The maximum speed (dashed curve) of both solution branches
is very small. For intermediate stratifications more sheet-like streets start to exist and
move faster than pair-like symmetric streets. Further to the right pair-like symmetric
streets move fastest. For antisymmetric hetonic streets plot (d) shows clearly the
occurrence of a critical minimum stratification σmin below which no quasi-stationary
solutions can be found. As can be seen from figures 12(b) and 12(d) the domain of
existence in the k−ε plane of hetonic streets depends strongly on stratification. There is
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Figure 12. Same as figure 9 but for hetonic streets.

no essential difference with the corresponding curves of upper-layer streets in figure 9
except that the domains of existence are below the equivalent barotropic limit and
that there is no finite barotropic limit.

Explicit asymptotic expressions for the propagation speed, the critical aspect ratios
and the critical stratifications can again only be found in the limit of dense (k 
 1)
and dilute (k 	 1) vortex streets.

The nearest neighbour approach for dilute (k 	 1) symmetric vortex streets gives the
expression for upper-layer streets with the second term again multiplied by the factor
−δ/(1 − δ). Fast hetonic symmetric streets move under the additional assumptions
k

√
ε/C 	 1 and ε/C 	 σ 2/(4δ(1 − δ)) with the speed (6.10) where Cf is now the

propagation speed of symmetric dilute hetonic streets for ε =0. The correction of the
f -plane speed of hetonic streets is the same as for upper-layer streets (6.10) and, up
to a factor δ, also as for barotropic streets (5.4). It is always negative and follows for
ε 	 k2/(4Cf ) an ε ln(1/ε) law, where Cf is the corresponding unperturbed f -plane
speed.

Assuming now only small stratifications ε/C 
 σ 2/(4δ(1−δ)) the dispersion relation
of dilute symmetric streets can be reduced to

C =
σ 2

8π(1 − δ)

√
C

ε
K0

(
k

√
ε

C

)
. (7.7)

This equation has no solutions if the stratification σ is above some critical minimum
stratification σmin. A lower bound can be given by

σmin �

√
8π

ξ0K0(ξ0)
(1 − δ)1/2 ε1/2 k1/2 ≈ 7.34 (1 − δ)1/2 ε1/2 k1/2, (7.8)
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where for ξ0 ≈ 0.47 the function ξK0(ξ ) takes its maximum value (ξ = k
√

ε/C).
Equivalently equation (7.7) is only solvable for aspect ratios below the critical
maximum aspect ratio kmax, which is bounded by

kmax � 0.02 σ 2 (1 − δ)−1 ε−1. (7.9)

For small stratifications the barotropic behaviour of dilute symmetric streets is
changed from the slow ε−1/3 to the faster ε−1 law (compare the solid curve in
figure 12b). For small arguments k

√
ε/C 	 1 equation (7.7) yields

C =
1

64π2
(1 − δ)−2ε−1σ 4, (7.10)

so that the propagation speed of dilute hetonic vortex streets increases only very slowly
for small stratifications (∼σ 4). This behaviour and the critical minimum stratification
can best be seen in figure 11(b) for the curve corresponding to the aspect ratio k = 0.2.
For large stratifications the propagations speed follows basically the corresponding
f -plane curve represented in figure 10(b). Starting from the representation (7.7) of
dilute hetonic streets the propagation speed of slow streets (k

√
ε/C 
 1) can be

deduced:

C = kε2 ln−2

(
σ 2

8
√

2π(1 − δ)kε

)
. (7.11)

This formula ceases to be valid for large stratifications.
Taking into account the influence of the nearest neighbours only, the

dispersion relation for dilute antisymmetric streets (k 	 1 and
√

ε/C 
 1) yields
for σ/

√
4δ(1 − δ) 	

√
ε/C an estimation for the lower bound of the critical minimum

stratification:

σmin �

√
π

max{ξ 2K0(ξ )} (1 − δ)1/2ε1/2k−1/2 ≈ 2.55(1 − δ)1/2ε1/2k−1/2, (7.12)

where the maximum is reached for ξ0 ≈ 1.55 (ξ =
√

ε/4C). Unlike symmetric dilute
streets (see (7.8)) the critical minimum stratification increases with decreasing aspect
ratios so that the zero stratification limit can never be reached by antisymmetric dilute
streets (see curve for k = 0.2 in figure 11d). Through a transformation of equation
(7.12) an estimation of the critical minimum aspect ratio kmin can be deduced:

kmin � 6.52σ −2(1 − δ)ε. (7.13)

It shows the same linear ε behaviour as the barotropic limit (7.5) but with a
stratification-dependent gradient following a σ −2 law. The joint effects of an infinite
vortex row is, as for upper layer streets, already well approximated for aspect ratios
k > 1. The propagation speed of fast dense hetonic streets (k

√
ε/C 	 1) can be

approximated by (6.13) under the additional assumption
√

ε/C 	 σ/(2
√

δ(1 − δ))
where Cf is the propagation speed of dense hetonic streets on the f -plane. The
first-order correction term is identical to that for dense upper-layer streets (6.13). It
is negative and for ε 	 1 follows a

√
ε law. The curve for k = 1 on plots (b) and

(d) of figure 4 can be seen as an illustration of this law. The other curves in the
corresponding plots of figures 9 and 12 show a more complex behaviour which is
between the square root and the logarithmic law of dilute streets.
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Figure 13. Domains I–V of existence of stratified vortex streets in the (C, k)-plane for
(a) ε =0.1 and (b) ε = 0, δ = 0.5 on both plots. I: symmetric upper-layer streets; II: hetonic
symmetric streets; III: symmetric hetonic and antisymmetric upper-layer streets; IV: symmetric
and antisymmetric upper-layer streets; V: hetonic symmetric and antisymmetric streets.

Small stratifications σ/(2
√

δ(1 − δ)) 	
√

ε/C change the situation and the dispersion
relation is given by

C =
σk

8(1 − δ)

√
C

ε
exp

(
−k

√
ε

C

)
. (7.14)

As for dilute hetonic streets no solution can be found if the stratification is below
some minimum value. A lower bound for the critical minimum stratification σmin is
given by

σmin �
√

8e (1 − δ)1/2 ε1/2. (7.15)

In (9.7) below the constraint (7.15) on σ is reformulated as a constraint on the vorticity
density κ/a of a dense hetonic vortex street. For small stratifications only symmetric
dilute hetonic streets can survive and for antisymmetric hetonic streets there exists a
global minimum stratification (see figure 11d) which is due to the k−1/2 behaviour of
the lower bound of σmin of antisymmetric dilute streets (see estimation (7.12)).

Thus we conclude that the simultaneous vertical and horizonal separation of
vortices in hetonic streets generates a specific baroclinic dynamical behaviour which
essentially differs from that of upper-layer streets.

8. Diagram of states
The analysis of the nonlinear dispersion relations (5.1), (6.1) and (7.1) for the

different types of von Kármán streets is completed by a classification of possible
states on a diagram of states on the (k, C)-plane with ε as the classification parameter.
Figure 13(a) represents the diagram of states for ε =0.1, corresponding to the value
used in the figures in previous sections. Five domains can be distinguished (see
figure 13 for their definition). None of the five domains can reach arbitrary large
aspect ratios. Domains III, IV and V can in addition never reach arbitrary small
aspect ratios. Moreover area V, containing antisymmetric hetonic streets, cannot be
found for stratifications σ � σmin(ε). Figures 13 and 14 show how the classification
diagram changes with changing ε. Figure 13(b) represents the case for ε → 0. Figure 14
shows changes with increasing ε. Figure 14(a) corresponds to the same topological
class as the diagram of figure 13(a) but was calculated for ε = 0.85, so that regions III,
IV and V are clearly separated from the area of small aspect ratios. Depending on ε,
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ε ε

εε

Figure 14. Representative diagrams of states for different intervals of planetary vorticity
gradients ε; δ = 0.5. In each interval the topology of the diagram of state remains the same.
Notation is as in figure 13.

four different topological classes can be distinguished. Apart from the first class (plot
a) for ε ∈ (0, 0.96], where all five regions are present and hetonic antisymmetric streets
only exist if the stratification is above some critical value σmin(ε) (here σmin(ε) ∼ 7.13),
a second class arises (plot b) for ε ∈ [0.97, 1.6], where region V vanishes so that
no antisymmetric hetonic streets can be found and antisymmetric upper-layer streets
only can survive if σ � σmax(ε) (here σmax ≈ 5.62). In the interval ε ∈ [1.61, 1.92]
(plot c) mixed domain IV vanishes. The critical maximum stratification for streets
still exists and has decreased in the case represented to σmax ≈ 2.19. Finally if ε passes
the critical threshold of 1.92 (plot d) region III also disappears and only symmetric
streets can survive.

The diagram of states considered represents only a part of the full diagram of states
of possible motions. On the beta-plane they are complemented in the sector C < 0 by
Rossby waves. On the f -plane in the sector C < 0 there are vortex street solutions,
obtained by changing the vorticity κ → −κ , which corresponds to a reflection of figure
13(b) about the k-axis.

9. Characteristic scales of QG vortex streets
9.1. Critical values

In real geophysical flows QG vortex streets often represent the large-scale coherent
part of turbulent QG beta-plane flows. The meridional size of such flows, e.g. zonal
jets, will be limited by the maximally allowed meridional scale of the coherent structure
(see for example the flow shown in figure 2).
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Critical width. Expressions for the critical width of von Kármán streets can be
obtained by reformulating in dimensional form the relations for the critical aspect
ratios k. If the vortex strength κ and the separation a of vortices within one row
is limited and β is given, the width of vortex streets cannot exceed a maximum
value bmax. For dilute symmetric vortex streets (a 
 b) equation (5.3) leads to the
dimensional expression

bmax =

(
ξmax

2π

)(
κ

β

)1/3

≈ 0.57

(
κ

β

)1/3

. (9.1)

This relationship shows that the critical width of vortex streets which are governed
basically by pair interactions between vortices scales as β−1/3 with the vortex strength
κ as the relevant dynamical quantity. For dense symmetric and antisymmetric vortex
streets (b 
 a) the dimensional form of (5.6) gives

bmax =
2

e

(
V

β

)1/2

≈ 0.74

(
V

β

)1/2

, (9.2)

where V = κ/2a. The critical width of vortex streets governed by the mean interactions
of many vortices scales as β−1/2 with the vorticity density κ/a as the dynamical relevant
quantity.

For antisymmetric streets there is at the same time also a critical minimum width,
which in the dilute approximation (a 
 b) can be estimated from (5.8) to be

bmin = 0.17
βa4

κ
. (9.3)

Stratification effects on critical width. Stratification has a strong influence on the
critical width and reduces the possible distances between vortices. Taking equations
(6.7) for dilute (a 
 b) and (6.9) for dense (a 	 b) symmetric upper-layer streets one
obtains

δ1/3bβ � bmax � bβ, δ1/2bβ � bmax � bβ (9.4)

respectively, with bβ the maximum barotropic distance given in equations (9.1) and
(9.2). Since δ < 1 the influence of stratification is felt more strongly by dense (sheet-
like) streets, than by dilute (pair-like) streets. For hetonic streets using (7.4) and (7.6)
one obtains

0 � bmax � δ1/3bβ, 0 � bmax � δ1/2bβ (9.5)

in the dense and dilute limit respectively. The lower bound for the critical maximum
width of upper-layer streets is at the same time the upper bound for hetonic streets.
The lower bound for the critical maximum width of hetonic streets is zero.

Critical vorticity strength and density. All formulae for the critical width and critical
zonal distance can be transformed to expressions for the critical minimum vortex
strength. For example barotropic antisymmetric streets can only be found if

κ � κmin with κmin =
2

εmax

β a3 ≈ 1.04 β a3 (9.6)

or dense (a 	 b) hetonic streets if

V � Vmin with Vmin = e β R2. (9.7)

If the geometry, vortex strength and planetary vorticity gradient are prescribed (9.7)
yields an upper bound for the Rossby radius R, i.e. critical stratification.
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Critical planetary vorticity gradient. If on the other hand the vortex strength κ

and the geometry of a street are fixed there can only be a solution if β is below
some critical value βmax or equivalently, if the street is located above some critical
latitude φmin when beta is treated as the planetary vorticity gradient on the sphere
(β =2Ω/Rp sin Φ). From this it follows that antisymmetric vortex street-like global
flows will only be found in latitudes not too close to the equator of a rotating planet.
Since for given planetary rotational frequency Ω the vorticity gradient β decreases
with increasing planetary radius Rp vortex-street-like global flows will exist for a
wider range of parameters on larger planets than on smaller ones. Both results seem
to be in agreement with observations of vortex structures on Jupiter (Ingersoll 1990
and Marcus & Lee 1994). However, we emphasize that this result does not take into
account the effect of background shear flows on vortex dynamics, although this effect
can be significant, see e.g. Youssef & Marcus (2003).

Critical zonal distance. The maximum planetary vorticity gradient εmax ∼ 1.92
beyond which no barotropic antisymmetric street can exist (see figure 5) gives a
dimensional relation for the maximum separation amax of vortices in one row:

amax =
(εmax

2

)1/3
(

κ

β

)1/3

= (εmax)
1/2

(
V

β

)1/2

. (9.8)

The typical velocity of the flows produced by von Kármán streets is given by
V =(ūmax − ūmin)/2, which corresponds to half the velocity jump of the zonal mean
flow, i.e. the difference of the maximum and minimum speed of the mean flow.

9.2. Estimations for laboratory and numerical experiments and natural conditions

The diagram of states for antisymmetric barotropic streets shown in figure 5 can be
compared to the diagram of states (figure 1c) in Flierl et al. (1987) obtained by their
numerical simulations of antisymmetric vortex streets arising from a perturbed zonal
jet with Gaussian velocity profile on an doubly periodic barotropic beta-plane. They
calibrated their model to conditions typical for the Gulf Stream, using as scales the
half-width l = 100 km and maximum speed Umax = 2 m s−1 of the jet. The direction
of propagation of streets is in agreement with our theory (c > 0). In the range of
parameters covered in numerical runs they found the existence of a critical maximum
planetary vorticity gradient β� = βl2/Umax = 0.5, beyond which vortex streets cease to
exist and a transition to a different flow regime occurs. This value is defined with
accuracy (±0.2) due to the limited number of experiments. Our theory describes this
transition, see the solid line in figure 5, where the critical maximum planetary vorticity
gradient β� corresponds to εmax = 1.92. To compare the numerical and theoretical
results formula (9.8) can be used to derive the zonal distance between vortices amax.
If we identify the distance b between vortex rows with l, our characteristic velocity V

with Umax and assume β∗ = 0.414 in accordance with data we obtain the theoretical
estimation amax ≈ 2.2 l = 220 km. The maximum distance between vortices along the
row of the corresponding numerical vortex street, with k� =1.227, is amax = 360 km.
This result does not take into account finite core effects and thus underestimates the
maximum distance.

Both diagrams show an increase of the interval of existence for decreasing planetary
vorticity gradients. However a detailed comparison between the numerically and
theoretically derived relationships for the increase is again impossible, since from the
limited number of numerical runs only roughly interpolated curves are available.
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δ σ β (m−1 s−1) 2V (m s−1) acrit(m) bcrit(m)

Ocean (R = ∞) 0.2 0 1.15 × 10−11 0.25 140 × 103 42 × 103

Ocean (R = 0) 0.2 ∞ 1.15 × 10−11 0.25 77 × 103 19 × 103

Atmosphere (R = ∞) 0.5 0 1.15 × 10−11 10 900 × 103 270 × 103

Atmosphere (R = 0) 0.5 ∞ 1.15 × 10−11 10 775 × 103 190 × 103

Jupiter (R = ∞) 1 0 10−12 50 4900 × 103 1420 × 103

Small tank (R = ∞) 1 0 26 0.2 0.1 0.03
Coriolis (R = ∞) 1 0 0.02 0.05 1.55 0.45

Table 1. Critical geometry of antisymmetric streets in different typical situations. The
barotropic case (R = ∞) is the upper limit, where stratification effects are not felt. The lower
limit is represented by the equivalent barotropic case (R = 0). The critical widths based on
symmetric vortex streets are in general larger, twice as big for example in the two cases given
for the ocean. On Earth and Jupiter a reference latitude of 60◦ is chosen.

The generalization to different baroclinic cases is described by the diagrams of
states for upper-layer and hetonic streets (see plots (b) and (d) of figures 9 and 12).
Taking εmax from these diagrams and using as before equation (9.8) the critical
scales of vortex streets can be estimated for typical atmospheric, oceanic, jovian and
laboratory conditions (for a summary see table 1).

For the ocean a typical midlatitude situation (≈60◦) in the Southern Ocean is chosen.
There we have the planetary vorticity gradient β = 1.15 × 10−11 m−1 s−1, a relative
thickness of the upper layer of δ = 0.2 and a Rossby radius of R = 10 km. As a basis
for the estimations a zonal flow with a velocity jump of 2V = umax − umin =0.25 m s−1

is considered. Assuming that the distances between vortices are much smaller than
the Rossby radius (σ = 0) we find amax =140 km as the maximum distance between
vortices in the x-direction and a corresponding street width of bmax =42 km. Since
the distances are larger than the Rossby radius these critical distances are only an
upper bound. The lower bound for the critical horizontal scales is obtained assuming
that distances between the vortices are much larger than the Rossby radius (σ = ∞).
They are amax = 77 km in the x-direction and bmax = 19 km in the y-direction. The
real values are in between since 2 � σ � 5. Going to the sheet limit a 	 b, the
critical width increases. As upper bound one has bmax =77 km and as lower bound
bmax =34 km.

So in the Southern Ocean at 60◦ south the critical width of the central part (distance
between inflection points) of intermittent zonal flows induced by von Kármán streets
is in all cases roughly of the order of the Rossby radius. Intermittent flows induced
by hetonic vortex streets have smaller horizontal scales than the intermittent flows
induced by upper-layer vortex streets. The lower bounds for the jet-like flows induced
by upper-layer vortex streets are upper bounds for front-like flows induced by hetonic
vortex streets, so that the critical widths of the mean flows induced by hetonic vortex
streets are also comparable to the Rossby radius.

The fact that for a given speed of the mean flow induced by a vortex street
the width is limited gives a good explanation for the multi-jet-structure of the
Antarctic Circumpolar Current, assuming that the oceanic flow self-organizes into
vortex streets. If we assume that a jet is roughly four times wider than its central part
we find distances from one jet to the next of between 120 km and 240 km, which is in
agreement with the values gathered from observations.
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For atmospheric flows β = 1.15×10−11 m−1 s−1, equal layers δ = 0.5 and a baroclinic
Rossby radius of 700 km are assumed. Taking zonal mean flows with a typical
velocity jump of umax − umin = 10 m s−1 one obtains amax = 900 km as upper bound for
the maximum distance in the x-direction and bmax =775 km in the y-direction. The
lower bound is given by amax = 775 km and bmax = 190 km. The real value again lies
somewhere in between. Since we have taken the same planetary vorticity gradient for
the atmosphere and ocean, the typical horizontal critical scales of atmospheric vortex
streets are larger by a factor of

√
Vatmos/Vocean ≈ 6.3 in the barotropic limit.

On Jupiter at 60◦ latitude β is about 10−12 m−1 s−1 and the typical velocity jump of
the zonal mean flow systems in the visible cloud layer is roughly 50 m s−1 so that the
critical horizontal scales for vortex streets in the barotropic limit are 7 times larger
on Jupiter than in the terrestrial atmosphere which is again in agreement with the
horizontal scales of the periodic vortex structures observed.

The experimental set-up of e.g. Sommeria, Meyers & Swinney (1991) has a rotational
period of Ttank = 0.2 s. The bottom slope (sb = 0.1) introduces, with the mean fluid
depth h0 = 0.2 m, a topographic vorticity gradient β ≈ 26 m−1 s−1. If one assumes
further a typical velocity jump umax − umin = 0.2 m s−1 of the mean flow, the vortex
centres cannot exceed the separation amax ≈ 0.1 m and the corresponding width should
be bmax ≈ 0.03 m. In the dense limit (a 	 b) equation (9.2) gives the critical distance
between the vortex rows (sheet) of bmax = 0.05 m. It seems that in this fast-rotating
small tank the dimensions of the vortex streets are at the limit of the resolving power
of the device.

A typical experimental set-up of a vortex experiment with the largest rotating
tank available at present (Coriolis, France) has a rotational period of the tank
of Ttank = 50 s. With a bottom slope gradient of sb = 0.05, a mean fluid depth of
h0 = 0.5 m, we obtain a topographic vorticity gradient of β = 0.02 m−1 s−1. Assuming
a velocity jump of umax − umin = 0.05 m s−1 the maximum distance between vortices
in one row is given by amax = 1.55 m and the corresponding width bmax = 0.45 m. If
we consider the critical width in the sheet limit (a 	 b) using (9.2) we find as critical
maximum width bmax = 0.82 m, so that vortex street phenomena on the beta-plane
should be resolvable using the Coriolis tank. The theory of symmetric vortex streets
can be used to describe currents induced by a row of vortices along a boundary with a
sloping bottom. Of course the estimations are only very rough since curvature effects
of the annulus as well as forcing and dissipation effects are not accounted for by the
theory.

10. Region of applicability and discussion
In this section it will be shown to what extent the results of the QG two-layer theory

of von Kármán vortex streets depends on the horizontal and vertical structure of
the PV field, the specific profile of background stratification, the nonlinear curvature
effects on planetary scales and finally on the effects of interaction with ambient shear
flows and Rossby waves.

10.1. Vertical structure of PV localization and continuous stratification effects

In the two-layer model QG PV anomalies associated with a single vortex are of finite
vertical extent and are distributed uniformly within each layer, which is a special
limiting case of three-dimensional PV distributions in continuously stratified fluids.
A complementary limiting case corresponding to localized modified PV anomalies of
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very thin vertical extent (Flierl 1987; Gryanik 1988) is described by

Q = γ

∞∑
m=−∞

[
δ(x − ma)δ

(
y − 1

2
b
)
δ(z − z+) − δ(x + s − ma)δ

(
y + 1

2
b
)
δ(z − z−)

]
, (10.1)

with γ the vortex strength (three-dimensional analogue of κ), s the shift of the rows,
and z± the vertical vortex coordinates of cyclones (+) and anticyclones (−).

As has been shown in § 2.2 all aspects of QG von Kármán vortex street theory
are determined by the corresponding Green’s function, so that the universality of the
results gained from a two-layer model can be judged from a comparison with the
Green’s functions of continuously stratified models. Although the exact structure of
the Green’s function in stratified fluids obviously depends on the profiles of the Brunt–
Väisälä frequency at large scales (r 
 R0) the Green’s function always has universal
barotropic asymptotics and is thus insensitive to the details of the stratification profiles.
In continuously stratified fluids the effect of finite R0 at scales r ∼ R0 is described
by a two-mode approximation (barotropic and first baroclinic) which is equivalent
to the two-layer approximation (see e.g. Gryanik et al. 2000). This approximation
neglects the vortex interactions due to higher-order baroclinic modes, which become
important at small separations r between vortices, and hence differences between
two-layer and continuously stratified models arise at small scales (r 	 R0). We can
easily quantify this difference, since in the limit of small scales arbitrary stratification
profiles can be approximated by a profile of constant Brunt–Väisälä frequency N

and since the Green’s function for fluids between two horizontal flat boundaries can
be given explicitly in this case, see Appendix C. Using the Green’s function (C 1),
(C 2) and retracing the procedure of derivation of the nonlinear dispersion relation
described in § 2.2 we find

c =
γNb

4πf

∞∑
n=−∞

∞∑
m=−∞

[(
1 +

1

r−
nm

)
exp(−λr−

nm)

r−
nm

+

(
1 +

1

r+
nm

)
exp(−λr+

nm)

r+
nm

]
, (10.2)

where λ=
√

β/c and r±
mn = [(ma−s)2+b2+ N2

f 2 (d
± −2Hn)2]1/2 are the three-dimensional

distance functions with the shift between rows s = 0 for symmetric streets and s = a/2
for antisymmetric streets and the vertical distances d− = z+ − z− between vortices and
d+ = z+ + z− between vortices and first vertical images. A systematic and detailed
analysis (similar to that given in § § 5 to 7) will form part of future studies. The limit of
dilute streets of equation (10.2), coinciding with vortex pairs and vortex tripoles, was
investigated for infinite and semi-infinite layer depths by Flierl (1987) and Gryanik
(1988). From these studies it follows that the speed of propagation of QG von
Kármán vortex streets at small scales depends on the degree of vertical localization
of the PV field (column-like vortices in the two-layer model and blob-like vortices in
continuously stratified models). At small scales (r 	 (N/f )d−) the azimuthal velocity
v of an individual column-like vortex is v ∼ r ln r in a two-layer model instead of
v ∼ r for a blob-like vortex in a continuously stratified model. The interaction between
vortices in a continuously stratified fluid increases in the limit of small distances since
more and more higher-order baroclinic modes come into play. Correspondingly for
small scales, the region of existence and the speed of propagation of streets increases,
even more strongly than in the case of a two-layer fluid.

10.2. Surface boundary condition and ‘compressibility’ effects

The rigid lid boundary conditions, used in our investigation, filter out the effect of
superinertial waves and are natural at the bottom, and quite justified at the surface if
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the typical size of the domain is much smaller than the barotropic Rossby–Obukhov
deformation radius L0 = (gH )1/2/f . For oceanic conditions L0 
 R0, so that the rigid
lid boundary condition can be used. For the atmosphere on the other hand, the
rigid lid condition is too restrictive. The analysis of Gryanik (1983) shows that in
the case of a QG two-layer model with a finite barotropic deformation radius L0

the interaction between vortices exponentially decreases for r 
 L0 even without the
β-effect, mainly due to the modification of the barotropic part of the Green’s function.
So, the propagation speed of QG von Kármán vortex streets becomes affected by
compressibility at scales comparable with or larger than the barotropic deformation
radius L0.

It should be stressed that the non-existence of westward propagating vortex streets
in the model under consideration is due to the rigid lid boundary condition. If the
Rossby–Obukhov radius L0 is taken to be finite, vortex streets can also exist, as
long as the necessary condition c < −βR2

0 is satisfied. Only under these condition
can localized vortices propagating westward exist (see Nycander 1994). Although the
condition c < −βR2

0 is not very realistic for the ocean on Earth, it can be realized
in the atmospheres of giant planets and in laboratory experiments. Quantitative
results on the effects of a finite L0 on the properties of QG von Kármán vortex
streets can easily be obtained in the barotropic case by taking the dispersion relation
(3.4) of barotropic vortex streets with the modified length scale λ=

√
β/c + 1/L0. In

particular, the analysis shows that c → −βL2
0 from below in the limit βb2/κ → 1/L0.

The speed c coincides with the critical speed cRossby = −βL2
0 of barotropic Rossby

waves reached from above. The case of a QG two-layer model with a finite L0 needs
an additional detailed analysis, especially in the velocity range −βL0 <c < 0, where
von Kármán vortex streets can interact with Rossby waves.

10.3. Stability, Rossby wave radiation and shear effects

QG vortex streets can become dynamically unstable due to perturbations of the
positions of the individual vortices forming the street. The linear stability analysis of
von Kármán streets in 1 1/2-layer models performed by Stewart (1945) and Masuda
& Miki (1995) show that stratification increases the stability of von Kármán vortex
streets with respect to streets in barotropic fluids. Finite cores of vortices also increases
the stability region of vortex streets as was investigated by Saffman & Schatzman
(1982). Also, horizontal boundaries stabilize vortex streets as shown in Rosenhead
(1929). These different stabilization effects are expected to also be valid for two-layer
QG von Kármán vortex streets. The instability analysis of QG von Kármán vortex
streets is an attractive subject for future investigation, which will extend the previous
work to the case of stratified and differentially rotating fluids.

It is necessary to bear in mind, however, that perturbations in the positions of
individual vortices forming the street on the beta-plane are accompanied in general
by Rossby wave radiation (Gryanik 1992a; Korotaev 1997), so that the radiation
of Rossby waves by vortices can be an additional mechanism of instability of QG
von Kármán vortex streets. We notice that the speed of propagation of QG von
Kármán vortex streets c > 0 is outside the range of phase speed of Rossby waves
c < 0, so the radiation of Rossby waves by the Cherenkhov mechanism by steady
propagating QG von Kármán vortex streets without perturbations is impossible. To
obtain a qualitative a priori insight into the physics of radiation of Rossby waves of
QG von Kármán vortex streets, we can consider the limit of dilute streets and use
the results of Reznik (1992) on the dynamics of an individual point vortex on the
beta-plane. According to Reznik (1992), see also Reznik et al. (1997), cyclonic vortices
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propagate to the north west, and anticyclonic ones to the south west. Obviously, this
type of dynamics will increase the separation between the vortex rows of opposite sign
forming the street, and so decrease the mutual interaction between vortices. Finally,
we can expect a decreased eastward propagating speed of the vortex street. To what
extent the combined effects of perturbation in position of vortices and of radiation of
Rossby waves by vortices forming the street control the stability of the vortex streets
is an open question.

Obviously, in real geophysical situations self-organization of turbulent zonal jets
is accompanied by interaction processes with large-scale regular background flows.
In the laboratory and numerical experiments of Marcus & Lee (1998) and Youssef
& Marcus (2003) von-Kármán-type vortex structures propagating to the west are
documented, in the case where cyclonic vortex chains are placed in the cyclonic flanks
and anticyclonic vortex chains in the anticyclonic flanks of westward propagating
barotropic background jets. We think that the difference with our results could be
attributed to the presence of a non-uniform asymmetric background shear flow. The
analytical analysis of the case of a constant baroclinic background shear flow in a
two-layer beta-plane QG model (Borth 1999) also shows that the interaction with
background shear flows modifies the solvability condition and diagram of states.

Summarizing, many factors can influence the results obtained with our idealized
model and it is possible that also in the frame of the QG-model the set of exact
solutions found can be incomplete. All this indicates that focused laboratory and
numerical experimental studies are urgently needed to support or reject the theoretical
predictions.

11. Conclusions
A theory of QG von Kármán streets in two-layer fluids on beta-plane has been

developed.
The theory can be used to describe the large-scale anisotropic part of quasi-

zonal turbulent flows arising naturally in oceanic (Rintoul, Hughes & Olbers 2000),
atmospheric (Ingersoll 1990) and rotating tank flows (Sommeria et al. 1991) as well
as in many different numerical models running under atmospheric, oceanic or more
general planetary conditions such as on Jupiter (Wolff, Maier-Reimer & Olbers 1991;
Marcus & Lee 1998; Rintoul et al. 2000 and references therein). The theory also
provides qualitative knowledge about the topology and dynamics of non-QG flows,
since the basic mechanism of self-organization of localized vortices into periodic
structures is similar, see for example Pao, Lai & Schemm (1982). A qualitative
description of self-organized vortex streets with a horizontal axis, which are a model
of spiral symmetric vortex street solutions of the Boussinesq equations were suggested
for atmospheric boundary layer vortices by Gryanik (1992b) and for acoustic gravity
vortices in the stratosphere by Stenflo (1994).

We hope that the theory of QG von Kármán vortex streets will be useful for
developing new models of balanced intermittent jets and fronts and for understanding
other problems of geophysical fluid dynamics such as for example the passive scalar,
chemical and biological transport in highly intermittent turbulent flows, in which the
coherent part is important and can be represented by von-Kármán-type vortex streets.
The modelling of intermittent jet-like or frontal zones by QG von Kármán streets can
help to explain naturally the east–west anisotropy of jets, the existence of a critical
width and stratification and allows dynamically based scalings to be introduced.
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Appendix A. Green’s function representations
The explicit form of the streamfunction ψA(x, y) of a vortex-induced flow is given

by the Green’s function of an individual vortex Gλ
α(x, y) (see equation (2.9)) summed

over all positions of the vortices belonging to the vortex structure.
The condition of a-periodicity in the x-direction gives the possibility of introducing

the explicit form of the appropriate Green’s function corresponding to a vortex row
Gλ

row(x, y; x0, y0) by summing the contributions of the periodically spaced vortices. It
is defined by

Gλ
row(x, y; x0, y0) =

+∞∑
m=−∞

Gλ(x − x0 − ma, y − y0). (A 1)

The summation over Green’s function G0 is expressible in closed form as

G0
row(x, y; x0, y0) =

1

4π
ln

(
cosh

2π(y − y0)

a
− cos

2π(x − x0)

a

)
, (A 2)

see e.g. Lamb (1932). In the case λ �= 0 one has to calculate the sum (3.2). Although
this sum converges rapidly, it cannot be written in closed analytical form. This
representation of Green’s function (A 1) emphasizes the contributions of individual
point vortices to the total flow induced by the vortex row. A complementary
representation for the Green’s function of a vortex row emphasizing the integral
effects of all vortices in the row can be found in a few steps. First we calculate the

Fourier transform Ĝrow(k) of Grow(r):

Ĝλ
row(k) = − e−ikxx0−ikyy0

k2
x + k2

y + λ2

∞∑
m=−∞

e−ikxam, (A 3)

where k = (kx, ky) is the wave vector. Next we substitute the sum of exponential
functions using the Poisson summation formula

∞∑
m=−∞

e−ikxam =
2π

a

∞∑
n=−∞

δ

(
kx − πn

a

)
(A 4)

and apply the inverse Fourier transform to Ĝrow(k) by first integrating over kx and
then over ky . Using the integration formula∫ ∞

0

cos yky

k2
y + µ2

n

dky =
π

2µn

e−µn|y| (A 5)

with µ2
n = λ2 + (πn/a)2 (see Gradshteyn & Ryzhik 1979) gives the result (3.3).
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Appendix B. Asymptotic expressions for the propagation speed
To calculate the asymptotical behaviour of the propagation speed for large k = b/a

(dense vortex streets) we will use the formulae for the velocity field of the row:

u(x, y) = sign(y−y0)
1

2a

[
e−λ|y−y0| +2

∞∑
n=1

exp(−
√

(2πn/a)2+λ2|y−y0|) cos
2πn

a
(x−x0)

]
,

(B 1)

v(x, y) =
2π

a2

∞∑
n=1

exp(−
√

(2πn/a)2 + λ2|y − y0|)√
(2πn/a)2 + λ2

n sin
2πn

a
(x − x0). (B 2)

We obtain the propagation speed c of a symmetric barotropic street by evaluating
κ u(0, b/2) for a vortex row shifted by x0 = 0 and y0 = −b/2:

c =
κ

2a

[
e−λb + 2

∞∑
n=1

exp(−
√

(2πn/a)2 + λ2b)

]
. (B 3)

The leading terms of the expansion for a 	 1/λ can be calculated in explicit form by
keeping in the sum only terms depending on m and summing using the geometric
progression formula. The result is

c =
κ

2a

[
e−λb + 2(exp(2πb/a) − 1)−1

]
. (B 4)

Similarly the propagation speed c of an antisymmetric barotropic street is obtained
by evaluating κu(0, b/2) for a vortex row shifted by x0 = a/2 and y0 = −b/2:

c =
κ

2a

[
e−λb + 2

∞∑
n=1

(−1)n exp(−
√

(2πn/a)2 + λ2b)

]
. (B 5)

The asymptotics in the limit a 	 1/λ is given by

c =
κ

2a

[
e−λb − 2

(
e2πb/a + 1

)−1]
. (B 6)

The asymptotic propagation speeds c for the other vortex streets Se, Ae, Sd and Ad

are obtained by taking the appropriate linear combinations of the asymptotic formula
(B 4) and replacing λ by λ1 and λ2.

To calculate approximate formulae for the propagation speeds c for streets with
aspect ratios b/a 	 1 (dilute vortex streets) the first representation in terms of modified
Bessel functions is more convenient.

Appendix C. Green’s function for a continuously stratified fluid
The Green’s function for a continuously stratified fluid with flat rigid boundaries is

calculated easily by the method of images from the Green’s function for an unbounded
domain. The result of straightforward calculation is

G(r, z, z0) =

+∞∑
n=−∞

{G0(r, z − z0 + 2Hn) + G0(r, z + z0 + 2Hn)}, (C 1)
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with

G0(r, z) = − N

4πf

exp

(
−λ

(
r2 +

N2

f 2
z2

)1/2
)

(r2 + (N2/f 2)z2)1/2
, (C 2)

where λ2 = β/c as before and G0(r, z) is the Green’s function in an unbounded fluid
(Flierl 1987; Gryanik 1988).
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